Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(20): 7029-7045, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167610

RESUMO

In modern life, people face a wide number of sticky problems when adhesion is highly undesirable: water and dirt stick to clothes, useful materials stick to the walls of their containers and cannot be fully used, water sticking and freezing on airplane wings affects handling and can be dangerous, biological liquids can stick and form clots inside medical devices threatening patients' lives, etc. Slippery liquid-infused porous surfaces (SLIPSs) with pressure stable omniphobicity could help to solve these issues. Lubricant depletion from porous surface and subsequent degradation of omniphobic properties is the major problem for SLIPS. It could be resolved by attaching flexible, liquid-like sidechains to the polymer matrix. Understanding the relationship between the structure of such polymer films and wetting effects is therefore of great importance. The present work is devoted to the study of droplet pinning on crosslinked polydimethylsiloxane (PDMS) polymer films with varied amounts of attached flexible PDMS sidechains and clarification of the relationship between slippery and viscoelastic properties of the films. An one-stage approach to the synthesis of such slippery coatings on smooth and porous substrates in "eco-friendly" pressurized CO2 solutions is proposed. Pinning force and Young's modulus (E) of the films on silicon substrates with variation of the grafted sidechains amount (x) are measured. The non-monotonic dependence of the pinning force on the amount of sidechains is obtained: the pinning force decreases at small x values (region I) and starts to increase at higher x (region II). The effects of the grafted sidechains amount, as well as matrix softening, are discussed for each case. It is demonstrated that the proposed method of film synthesis allows one to obtain thin, uniform coatings on fabrics without gluing the fibers. Such coatings with an optimal amount of PDMS sidechains demonstrate decreased sliding angles for droplets of water and aqueous alcohol solutions, as compared to PDMS coatings without grafted sidechains. The proposed technique may be of interest for deposition of coatings on porous surfaces having a complex morphology, such as textiles, aerogels, porous electrodes, etc.

2.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875644

RESUMO

Aqueous zinc-ion batteries have attracted the attention of the industry due to their low cost, good environmental friendliness, and competitive gravimetric energy density. However, zinc anodes, similar to lithium, sodium and other alkali metal anodes, are also plagued by dendrite problems. Zinc dendrites can penetrate through polymer membranes, and even glass fiber membranes which seriously hinders the development and application of aqueous zinc-ion batteries. To resolve this issue, certain additives are required. Here we have synthesized an electrochemical graphene oxide with novel electrolyte based on tryptophan, which allows to obtain few-layered sheets with a remarkably uniform morphology, good aqueous solution dispersion, easy preparation and environmental friendliness. We used this electrochemical graphene oxide as an additive to the electrolyte for aqueous zinc-ion batteries. The results of phase-field model combined with experimental characterization revealed that the addition of this material effectively promotes the uniform distribution of the electric field and the Zn-ion concentration field, reduces the nucleation overpotential of Zn metal, and provides a more uniform deposition process on the metal surface and improved cyclability of the aqueous Zn-ion battery. The resultant Zn∣Zn symmetric battery with the electrochemical graphene oxide additive affords a stable Zn anode, which provided service for more than 500 h at 0.2 mA cm-2and even more than 250 h at 1.0 mA cm-2. The Coulombic efficiency (98.7%) of Zn∣Cu half-cells and thus cyclability of aqueous Zn-ion batteries using electrochemical graphene oxide is significantly better compared to the additive-free electrolyte system. Therefore, our approach paves a promising avenue to foster the practical application of aqueous Zn-ion batteries for energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...